Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(8): 1499-1518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528181

RESUMO

The intestinal pathogen Salmonella enterica rapidly enters the bloodstream after the invasion of intestinal epithelial cells, but how Salmonella breaks through the gut-vascular barrier is largely unknown. Here, we report that Salmonella enters the bloodstream through intestinal CX3CR1+ macrophages during early infection. Mechanistically, Salmonella induces the migration/invasion properties of macrophages in a manner dependent on host cell actin and on the pathogen effector SteC. SteC recruits host myosin light chain protein Myl12a and phosphorylates its Ser19 and Thr20 residues. Myl12a phosphorylation results in actin rearrangement, and enhanced migration and invasion of macrophages. SteC is able to utilize a wide range of NTPs other than ATP to phosphorylate Myl12a. We further solved the crystal structure of SteC, which suggests an atypical dimerization-mediated catalytic mechanism. Finally, in vivo data show that SteC-mediated cytoskeleton manipulation is crucial for Salmonella breaching the gut vascular barrier and spreading to target organs.


Assuntos
Cadeias Leves de Miosina , Salmonella enterica , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Actinas/metabolismo , Células Epiteliais/metabolismo , Macrófagos/metabolismo
2.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38423177

RESUMO

INTRODUCTION AND OBJECTIVES: To evaluate the impact of dexmedetomidine impact on cardiac surgery-associated acute kidney injury (CSA-AKI), kidney function, and metabolic and oxidative stress in patients undergoing coronary artery bypass grafting with heart-lung machine support. METHODS: A randomized double-masked trial with 238 participants (50-75 years) undergoing coronary artery bypass grafting was conducted from January 2021 to December 2022. The participants were divided into Dex (n=119) and NS (n = 119) groups. Dex was administered at 0.5 mcg/kg over 10minutes, then 0.4 mcg/kg/h until the end of surgery; the NS group received equivalent saline. Blood and urine were sampled at various time points pre- and postsurgery. The primary outcome measure was the incidence of CSA-AKI, defined as the occurrence of AKI within 96hours after surgery. RESULTS: The incidence of CSA-AKI was significantly lower in the Dex group than in the NS group (18.26% vs 32.46%; P=.014). Substantial increases were found in estimated glomerular filtration rate value at T4-T6 (P<.05) and urine volume 24hours after surgery (P<.01). Marked decreases were found in serum creatinine level, blood glucose level at T1-T2 (P<.01), blood urea nitrogen level at T3-T6 (P<.01), free fatty acid level at T2-T3 (P<.01), and lactate level at T3-T4 (P<.01). CONCLUSIONS: Dex reduces CSA-AKI, potentially by regulating metabolic disorders and reducing oxidative stress.

3.
J Cardiothorac Surg ; 19(1): 40, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38303013

RESUMO

BACKGROUND: Coagulation factor XI deficiency is an autosomal recessive hereditary disease with a low incidence. It usually occurs after surgery or trauma; Esophageal cancer is a common malignant tumor of the digestive tract in China. But so far, surgery-based comprehensive treatment of esophageal cancer still dominates. CASE PRESENTATION: We report a case of an Asian patient with XI factor deficiency and lower esophageal squamous cell carcinoma who was admitted to our hospital recently. After active preoperative preparation, the operation was successfully performed, and there was no obvious abnormal bleeding during and after the operation. CONCLUSIONS: Coagulation factor XI deficiency is a relatively rare disease, and patients with the disease will face a greater risk of bleeding during the perioperative period. The encouraging perioperative outcome enables us to have a deeper understanding of surgical treatment strategies for patients with Coagulation factor XI deficiency.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Deficiência do Fator XI , Humanos , Neoplasias Esofágicas/complicações , Neoplasias Esofágicas/cirurgia , Carcinoma de Células Escamosas do Esôfago/complicações , Carcinoma de Células Escamosas do Esôfago/cirurgia , Fator XI , Deficiência do Fator XI/complicações , Hemorragia/etiologia , Masculino , Idoso
4.
Mar Drugs ; 21(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37888452

RESUMO

Angiogenesis refers to the process of growing new blood vessels from pre-existing capillaries or post-capillary veins. This process plays a critical role in promoting tumorigenesis and metastasis. As a result, developing antiangiogenic agents has become an attractive strategy for tumor treatment. Sirtuin6 (SIRT6), a member of nicotinamide adenine (NAD+)-dependent histone deacetylases, regulates various biological processes, including metabolism, oxidative stress, angiogenesis, and DNA damage and repair. Some SIRT6 inhibitors have been identified, but the effects of SIRT6 inhibitors on anti-angiogenesis have not been reported. We have identified a pyrrole-pyridinimidazole derivative 8a as a highly effective inhibitor of SIRT6 and clarified its anti-pancreatic-cancer roles. This study investigated the antiangiogenic roles of 8a. We found that 8a was able to inhibit the migration and tube formation of HUVECs and downregulate the expression of angiogenesis-related proteins, including VEGF, HIF-1α, p-VEGFR2, and N-cadherin, and suppress the activation of AKT and ERK pathways. Additionally, 8a significantly blocked angiogenesis in intersegmental vessels in zebrafish embryos. Notably, in a pancreatic cancer xenograft mouse model, 8a down-regulated the expression of CD31, a marker protein of angiogenesis. These findings suggest that 8a could be a promising antiangiogenic and cancer therapeutic agent.


Assuntos
Neoplasias , Sirtuínas , Humanos , Camundongos , Animais , Transdução de Sinais , Neovascularização Patológica/metabolismo , Peixe-Zebra/metabolismo , Neoplasias/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Sirtuínas/metabolismo , Células Endoteliais da Veia Umbilical Humana
5.
Cell Death Dis ; 14(8): 499, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542062

RESUMO

Pancreatic cancer is a highly aggressive cancer, and is primarily treated with gemcitabine, with increasing resistance. SIRT6 as a member of sirtuin family plays important roles in lifespan and diverse diseases, such as cancer, diabetes, inflammation and neurodegenerative diseases. Considering the role of SIRT6 in the cytoprotective effect, it might be a potential anticancer drug target, and is associated with resistance to anticancer therapy. However, very few SIRT6 inhibitors have been reported. Here, we reported the discovery of a pyrrole-pyridinimidazole derivative, 8a, as a new non-competitive SIRT6 inhibitor, and studied its roles and mechanisms in the antitumor activity and sensitization of pancreatic cancer to gemcitabine. Firstly, we found a potent SIRT6 inhibitor compound 8a by virtual screening and identified by molecular and cellular SIRT6 activity assays. 8a could effectively inhibit SIRT6 deacetylation activity with IC50 values of 7.46 ± 0.79 µM in FLUOR DE LYS assay, and 8a significantly increased the acetylation levels of H3 in cells. Then, we found that 8a could inhibit the cell proliferation and induce cell apoptosis in pancreatic cancer cells. We further demonstrate that 8a sensitize pancreatic cancer cells to gemcitabine via reversing the activation of PI3K/AKT/mTOR and ERK signaling pathways induced by gemcitabine and blocking the DNA damage repair pathway. Moreover, combination of 8a and gemcitabine induces cooperative antitumor activity in pancreatic cancer xenograft model in vivo. Overall, we demonstrate that 8a, a novel SIRT6 inhibitor, could be a promising potential drug candidate for pancreatic cancer treatment.


Assuntos
Neoplasias Pancreáticas , Sirtuínas , Humanos , Apoptose , Linhagem Celular Tumoral , Gencitabina , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Pirróis/farmacologia , Pirróis/uso terapêutico , Sirtuínas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Sci Prog ; 106(1): 368504231157707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36927260

RESUMO

As a low-carbon and cost-effective clean energy source, natural gas plays an important role in achieving China's "Dual Carbon" target. In this article, a new three-parameter discrete grey prediction model is used to simulate and forecast the production and consumption of natural gas in China from the perspective of background value optimization. Then the minimum mean absolute percentage error as the objective function from the perspective of fractional order cumulative generation in the real number field. Last, a fractional order in the real number field three parameter discrete grey prediction model TDGM(1,1,z,r(R)) is constructed under the condition of optimal background value. Then we use the model to simulate and predict China's Natural Gas External Dependence (NGED) under the "Dual Carbon" target. The results show that the performance of the new model is better than that of the traditional model GM(1,1) and DGM(1,1), thus proving the practicability and effectiveness of the new model. Put forward relevant policy suggestions according to the prediction results of China's NGED, and provide decision-making reference for the Chinese government to achieve the "Dual Carbon" goals.

7.
Cardiovasc Drugs Ther ; 37(3): 449-460, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35088192

RESUMO

PURPOSE: To investigate the role of cyclin-dependent kinase 9 (CDK9) and the therapeutic potential of a CDK9 inhibitor (flavopiridol) in monocrotaline (MCT)-induced pulmonary hypertension (PH). METHODS: For the in vivo experiments, rats with PH were established by a single intraperitoneal injection of MCT (60 mg/kg). After 2 weeks of MCT injection, rats were then treated with flavopiridol (5 mg/kg, i.p., twice a week) or vehicle for 2 weeks. For the in vitro experiments, human pulmonary artery smooth muscle cells (HPASMCs) were treated with flavopiridol (0.025-1 µM) or vehicle under hypoxic conditions. Hemodynamic recording, right ventricle histology, lung histology, and pulmonary arterial tissue isolation were performed. The expression levels of CDK9, RNA polymerase II, c-Myc, Mcl-1, and survivin were determined by qRT-PCR and western blotting, and the proliferation and apoptosis of rat pulmonary arterial tissues and/or HPASMCs were also assayed. RESULTS: Compared to the control group, CDK9 was upregulated in pulmonary arterial tissues from MCT-induced PH rats and hypoxic cultured HPASMCs. Upregulation of CDK9 was associated with enhanced phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (RNA pol II) at serine-2 (Ser-2), promoting the expression of prosurvival and antiapoptotic proteins (c-Myc, Mcl-1, and survivin). Furthermore, treatment with flavopiridol (5 mg/kg) significantly alleviated pulmonary artery remodeling and partially reversed the progression of MCT-induced PH. Consistently, flavopiridol (0.5 µM) treatment decreased the proliferation and induced the apoptosis of cultured HPASMCs under hypoxic conditions. As a result of CDK9 inhibition and subsequent inhibition of RNA pol II CTD phosphorylation at Ser-2, flavopiridol decreased c-Myc, Mcl-1, and survivin expression in isolated pulmonary small arteries, leading to cell growth inhibition and apoptosis. CONCLUSION: Flavopiridol mitigates the progression of MCT-induced PH in rats by targeting CDK9.


Assuntos
Hipertensão Pulmonar , Ratos , Humanos , Animais , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Survivina/metabolismo , RNA Polimerase II/metabolismo , Monocrotalina/efeitos adversos , Monocrotalina/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Artéria Pulmonar
8.
mBio ; 13(3): e0020722, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35532216

RESUMO

Iron limitation is a universal strategy of host immunity during bacterial infection. However, the mechanisms by which pathogens antagonize host nutritional immunity have not been fully elucidated. Here, we identified a requirement for the UMPylator YdiU for this process in Salmonella. The expression of YdiU was dramatically induced by the metal starvation signal. The intracellular iron content was much lower in the ΔydiU strain than in wild-type Salmonella, and the ΔydiU strain exhibited severe growth defect under metal deficiency environments. Genome-wide expression analyses revealed significantly decreased expression of iron uptake genes in ΔydiU strain compared with the wild-type strain. Interestingly, YdiU did not affect the expression level of the major iron uptake regulator Fur but directly UMPylated Fur on its H118 residue in vivo and in vitro. UMPylation destroyed the Fur dimer, promoted Fur aggregation, and eliminated the DNA-binding activity of Fur, thus abolishing the ability of Fur to inhibit iron uptake. Restricting Fur to the deUMPylated state dramatically eliminates Salmonella iron uptake in iron deficiency environments. In parallel, YdiU facilitates Salmonella survival within host cells by regulating the iron uptake pathway. IMPORTANCE Salmonella is the major pathogen causing bacterial enteric illness in both humans and animals. Iron availability is strictly controlled upon Salmonella entry into host cells. The mechanisms by which Salmonella balances the acquisition of sufficient iron while preventing a toxic overload has not been fully understood. Here, we reveal a novel regulation process of iron acquisition mediated by the UMPylator YdiU. Fur acts as the central regulator of bacterial iron homeostasis. YdiU UMPylates Fur on H118 and prevents Fur from binding to target DNA, thus activating the expression of iron uptake genes under iron-deficient conditions. We describe the first posttranslational modification-based regulation of Fur and highlight a potential mechanism by which Salmonella can adapt to eliminate host nutritional immunity.


Assuntos
Deficiências de Ferro , Proteínas Repressoras , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Salmonella/genética , Salmonella/metabolismo
9.
Biomacromolecules ; 22(7): 2921-2934, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34180218

RESUMO

Glioblastoma (GBM) is a fatal brain tumor with poor prognosis. Blood-brain barrier (BBB) prevents the effective delivery of chemotherapeutic agents to GBM. Herein, we developed a pH/reduction-sensitive carboxymethyl chitosan nanogel (CMCSN) modified by targeting peptide angiopep-2 (ANG) and loaded with doxorubicin (DOX). The multifunctional nanogel (DOX-ANG-CMCSN) exhibited good pH and reduction sensitivity, ideal stability, and biocompatibility. Its hydrodynamic diameter was 190 nm, drug loading was 12.7%, and the cumulative release rate of 24 h was 82.3% under the simulated tumor microenvironment. More importantly, the modification of ANG significantly enhanced BBB penetration and tumor targeting ability both in vivo and in vitro. DOX-ANG-CMCSN achieved 2-3-fold higher uptake and an enhanced antitumor activity compared with nontargeted DOX-CMCSN. Therefore, the targeted nanogels with the pH/reduction dual-stimuli response may provide a promising platform for GBM-targeted chemotherapy.


Assuntos
Quitosana , Glioblastoma , Linhagem Celular Tumoral , Doxorrubicina , Glioblastoma/tratamento farmacológico , Humanos , Concentração de Íons de Hidrogênio , Nanogéis , Peptídeos , Microambiente Tumoral
11.
Cell Rep ; 32(12): 108161, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32966796

RESUMO

Sensing stressful conditions and adjusting the cellular metabolism to adapt to the environment are essential activities for bacteria to survive in variable situations. Here, we describe a stress-related protein, YdiU, and characterize YdiU as an enzyme that catalyzes the covalent attachment of uridine-5'-monophosphate to a protein tyrosine/histidine residue, an unusual modification defined as UMPylation. Mn2+ serves as an essential co-factor for YdiU-mediated UMPylation. UTP and Mn2+ binding converts YdiU to an aggregate-prone state facilitating the recruitment of chaperones. The UMPylation of chaperones prevents them from binding co-factors or clients, thereby impairing their function. Consistent with the recent finding that YdiU acts as an AMPylator, we further demonstrate that the self-AMPylation of YdiU padlocks its chaperone-UMPylation activity. A detailed mechanism is proposed based on the crystal structures of Apo-YdiU and YdiU-AMPNPP-Mn2+ and on molecular dynamics simulation models of YdiU-UTP-Mn2+ and YdiU-UTP-peptide. In vivo data demonstrate that YdiU effectively protects Salmonella from stress-induced ATP depletion through UMPylation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Manganês/metabolismo , Transdução de Sinais , Estresse Fisiológico , Uridina Monofosfato/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Biocatálise , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Agregados Proteicos , Domínios Proteicos , Salmonella typhimurium/metabolismo , Salmonella typhimurium/ultraestrutura , Relação Estrutura-Atividade , Especificidade por Substrato , Uridina Trifosfato/metabolismo
12.
Front Cell Dev Biol ; 8: 540, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754587

RESUMO

Non-small cell lung cancer (NSCLC) is still challenging for treatment owing to immune tolerance and evasion. MicroRNA-138 (miR-138) not only acts as a tumor suppressor to inhibit tumor cell proliferation and migration but also regulates immune response. The regulatory mechanism of miR-138 in NSCLC remains not very clear. Herein, we demonstrated that miR-138-5p treatment decreased the growth of tumor cells and increased the number of tumor-infiltrated DCs. miR-138-5p not only down-regulated the expression of cyclin D3 (CCND3), CCD20, Ki67, and MCM in A549/3LL cells, but also regulated the maturation of DCs in A549-bearing nude mice and the 3LL-bearing C57BL/6 mouse model, and DCs' capability to enhance T cells to kill tumor cells. Furthermore, miR-138-5p was found to target PD-L1 to down-regulate PD-L1 on tumor cells to reduce the expression of Ki67 and MCM in tumor cells and decrease the tolerance effect on DCs. miR-138-5p also directly down-regulates the expression of PD-L1 and PD-1 on DCs and T cells. Similar results were obtained from isolated human non-small cell lung cancer (NSCLC) cells and DCs. Thus, miR-138-5p inhibits tumor growth and activates the immune system by down-regulating PD-1/PD-L1 and it is a promising therapeutic target for NSCLC.

13.
Nucleic Acids Res ; 48(17): 9571-9588, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32813023

RESUMO

Iron is essential for all bacteria. In most bacteria, intracellular iron homeostasis is tightly regulated by the ferric uptake regulator Fur. However, how Fur activates the iron-uptake system during iron deficiency is not fully elucidated. In this study, we found that YdiV, the flagella gene inhibitor, is involved in iron homeostasis in Escherichia coli. Iron deficiency triggers overexpression of YdiV. High levels of YdiV then transforms Fur into a novel form which does not bind DNA in a peptidyl-prolyl cis-trans isomerase SlyD dependent manner. Thus, the cooperation of YdiV, SlyD and Fur activates the gene expression of iron-uptake systems under conditions of iron deficiency. Bacterial invasion assays also demonstrated that both ydiV and slyD are necessary for the survival and growth of uropathogenic E. coli in bladder epithelial cells. This reveals a mechanism where YdiV not only represses flagella expression to make E. coli invisible to the host immune system, but it also promotes iron acquisition to help E. coli overcome host nutritional immunity.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Ferro/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas Repressoras/metabolismo , Escherichia coli Uropatogênica/patogenicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Linhagem Celular , DNA Bacteriano/metabolismo , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Homeostase , Humanos , Peptidilprolil Isomerase/genética , Conformação Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética , Bexiga Urinária/microbiologia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/crescimento & desenvolvimento , Escherichia coli Uropatogênica/metabolismo
14.
Sci Rep ; 8(1): 15247, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30323244

RESUMO

Irisin, a recently identified myokine that is released from skeletal muscle following exercise, regulates body weight and influences various metabolic diseases such as obesity and diabetes. In this study, human recombinant nonglycosylated P-irisin (expressed in Escherichia coli prokaryote cell system) or glycosylated E-irisin (expressed in Pichia pastoris eukaryote cell system) were compared to examine the role of recombinant irisin against pancreatic cancer (PC) cells lines, MIA PaCa-2 and Panc03.27. MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-di phenyltetrazolium bromide] and cell colony formation assays revealed that irisin significantly inhibited the growth of MIA PaCa-2 and Panc03.27 in a dose-dependent manner. Irisin also induced G1 arrest in both cell lines. Scratch wound healing and transwell assays revealed that irisin also inhibited the migration of PC cells. Irisin reversed the activity of epithelial-mesenchymal transition (EMT) while increasing E-cadherin expression and reducing vimentin expression. Irisin activated the adenosine monophosphate-activated protein kinase (AMPK) pathway and suppressed the mammalian target of rapamycin (mTOR) signaling. Besides, our results suggest that irisin receptors exist on the surface of human MIA PaCa-2 and Panc03.27 cells. Our results clearly demonstrate that irisin suppressed PC cell growth via the activation of AMPK, thereby downregulating the mTOR pathway and inhibiting EMT of PC cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proliferação de Células/efeitos dos fármacos , Fibronectinas/farmacologia , Neoplasias Pancreáticas/patologia , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Fibronectinas/fisiologia , Humanos , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
15.
Nucleic Acids Res ; 45(17): 9976-9989, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973452

RESUMO

Salmonella reduces flagella biogenesis to avoid detection within host cells by a largely unknown mechanism. We identified an EAL-like protein STM1697 as required and sufficient for this process. STM1697 surges to a high level after Salmonella enters host cells and restrains the expression of flagellar genes by regulating the function of flagellar switch protein FlhD4C2, the transcription activator of all other flagellar genes. Unlike other anti-FlhD4C2 factors, STM1697 does not prevent FlhD4C2 from binding to target DNA. A 2.0 Å resolution STM1697-FlhD structure reveals that STM1697 binds the same region of FlhD as STM1344, but with weaker affinity. Further experiments show that STM1697 regulates flagella biogenesis by restricting FlhD4C2 from recruiting RNA polymerase and the regulatory effect of STM1697 on flagellar biogenesis and virulence are all achieved by interaction with FlhD. Finally, we describe a novel mechanism mediated by STM1697 in which Salmonella can inhibit the production of flagella antigen and escape from the host immune system.


Assuntos
Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Genoma Bacteriano , Salmonella typhimurium/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Flagelos/ultraestrutura , Expressão Gênica , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Biogênese de Organelas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Virulência
16.
Artigo em Inglês | MEDLINE | ID: mdl-28217559

RESUMO

Human enterovirus type 71 (EV71), the major causative agent of hand-foot-and-mouth disease, has been known to cause fatal neurological complications. Unfortunately, the reason for neurological complications that have been seen in fatal cases of the disease and the relationship between EV71 virulence and viral genetic sequences remains largely undefined. The 3C protease (3Cpro) of EV71 plays an irreplaceable role in segmenting the precursor polyprotein during viral replication, and intervening with host life activity during viral infection. In this study, for the first time, the 69th residue of 3C protease has been identified as a novel virulence determinant of EV71. The recombinant virus with single point variation, in the 69th of 3Cpro, exhibited obvious decline in replication, and virulence. We further determined the crystal structure of 3C N69D at 1.39 Ǻ resolution and found that conformation of 3C N69D demonstrated significant changes compared with a normal 3C protein, in the substrate-binding site and catalytic active site. Strikingly, one of the switch loops, essential in fixing substrates, adopts an open conformation in the 3C N69D-rupintrivir complex. Consistent with this apparent structural disruption, the catalytic activity of 3C N69D decreased sharply for host derived and viral derived substrates, detected for both in vitro and in vivo. Interestingly, in addition to EV71, Asp69 was also found in 3C proteases of other virus strains, such as CAV16, and was conserved in nearly all C type human rhinovirus. Overall, we identified a natural virulence determinant of 3C protease and revealed the mechanism of attenuated virulence is mediated by N69D substitution. Our data provides new insight into the enzymatic mechanism of a subdued 3C protease and suggests a theoretical basis for virulence determinantion of picornaviridae.


Assuntos
Cisteína Endopeptidases/metabolismo , Enterovirus Humano A/patogenicidade , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Replicação Viral , Proteases Virais 3C , Substituição de Aminoácidos , Linhagem Celular , Cristalografia por Raios X , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Enterovirus Humano A/crescimento & desenvolvimento , Humanos , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação Puntual , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/genética , Virulência , Fatores de Virulência/química , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA